
J .  Fluid Mech. (1983), vol. 129, p p .  283-311 

Printed in Great Britain 

283 

Numerical processing of flow-visualization 
pictures - measurement of two-dimensional vortex flow 
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Faculty of Engineering Science, Osaka University, Togonaka, Japan 

(Received 13 January 1982 and in revised form 31 October 1982) 

A new system has been developed for estimating experimentally some of the principal 
physical variables of fluid flows, through flow-visualization and image-processing 
techniques. Distributions of stream function, vorticity and pressure are calculated 
by this system with reasonable accuracy for two examples of two-dimensional flow : 
namely unsteady twin-vortex flow behind a circular cylinder accelerated irnpulsivcly 
to constant speed, and Karman vortices behind a circular cylinder moving a t  constant 
speed. A detailed explanation of the image-processing technique and the numerical 
calculation process is given first, and then some consideration is given to calculated 
results in these two types of flow. Comparison shows that some results of the unsteady 
twin-vortex experiment coincide well with those of previously published experimental 
investigations and theoretical calculations. Errors introduced at  each stage of this 
system are estimated in some detail. 

1. Introduction 
I n  experimental investigations of fluid dynamics, the flow-visualization technique 

has the advantage of displaying the whole flow field a t  one time, whether steady or 
unsteady. In  particular, when we take a picture of pathlines produced by the motion 
of small particles suspended in fluid, we can even estimate some quantities such as 
velocity and acceleration. There have been a number of examples of velocity 
measurement from varied flow-visualization pictures. As for two-dimensional flow 
past a circular cylinder, studies have been produced by Schwabe (1935), Timme (1957) 
and Coutanceau and Bouard (Coutanceau & Bouard 1977a, b ;  Bouard & Coutanceau 
1980). Schwabe and Timme are concerned with analysis of the measured distribution 
of velocity, and, from such analysis, Schwabe obtains the pressure distribution on the 
cylinder surface, and Timme the circulation of shed vortices. Neasurement itself is 
conducted rather partially or fagmentarily in their experiments. Coutanceau and 
Bouard have investigated in the greatest of detail the geometric2al values of steady 
and of unsteady twin vortices, and the velocity distributions inside the vortex, though 
they have not analysed their measurements numerically so as to estimate other 
parameters of the flow. None of them, in short, has made full use of the quantitative 
information contained within a flow-visualization picture in order to obtain a general, 
systematic understanding of the flow. The reasons for this are thought to be the 
following : the amount of manual work required to locate the large number of particle 
pathlines with many types of photograph, the difficulty of numerical analysis with 
respect to measured velocity vectors in random arrangement, and the general 
assumption that accurate estimation of the results is very difficult. The present 
authors have therefore endeavoured to fill these gaps by determining the coordinates 
of particle paths both efficiently and accurately by the use of a personal computer 
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system with an image-processing device, and by interpolating the velocity a t  mesh 
points from among several or several tens of velocity vectors distributed around them, 
in order to calculate numerical distributions of stream function, vorticity and 
pressure. With the development of this system there arises the possibility not only 
of making an objective estimation of various types of flow with any initial or 
boundary conditions, but also of providing suggestive information for theoretical 
investigations, or even of producing an approximation of the first order in their 
analysis. In  the course of a specified explanation of the image-processing technique 
and the numerical calculation process, an examination of the results of the two 
examples of two-dimensional flow mentioned above, and a detailed estimation of 
errors, this paper claims that the system presented here has wide application as an 
accurate method of evaluating fields of unsteady two-dimensional flow. 

2. Experimental arrangements and numerical calculations 
2.1. Flow visualization and photography 

The flow-visualization experiments are all conducted in a towing water tank, of which 
a schematic illustration is given in figure 1 .  A quantity of aluminium powder with 
particles 2-7 pm in length to  be used as tracers is suspended uniformly in the water 
of the tank after several decantations. The illumination is provided by a sheet of in- 
tense light (generated by 9 projector bulbs in linear arrangement) passing through a 
5 mm wide slit. The lighting plane is situated in the midlevel horizontal cross-section 
of the tank. The test cylinder is fixed to  the towing carriage by a rigid metal bar about 
50 mm long. Two kinds of cylinders are employed here, 20 and 30 mm in diameter 
respectively, and both made of transparent acrylic plastic. For the purpose of 
photographing particle paths after regular time intervals, a 35 mm camera with an 
electric winding device and a Capacitance-Resistance oscillator is placed above the 
water tank in the position shown in figure 2. The photographic time interval available 
with this camera is between 1.3 and 600 s, in the case of our usual exposure time of 
0.9 s. There are two possible ways of fixing the camera; one by attaching it by a metal 
support to the frame of the water tank, which means an observation point fixed in 
relation to the fluid, and the other by attaching i t  to the towing carriage, which means 
an observation point fixed in relation to  the cylinder. The selection between these two 
depends mainly upon which is more convenient for measuring particle velocities from 
the resulting photographic images. When photographing the twin-vortex flow, for 
instance, the latter position is adopted because the resulting particle paths are long 
enough to be free from measurement errors. I n  spite of occasional adjustment of the 
room temperature and consequent motion of the fluid, it takes more than an hour 
for the particles in the tank to return to a stationary state after every disturbance 
(by ‘stationary state ’ we mean that every particle is recognized as a stationary point 
on photographs of 1 min exposure). Negative films of 400 ASA are usually 
overdeveloped for better visibility. Positive images are all printed on 12 x 10 in. 
plastic-coated photographic paper of ultrahigh contrast, which expands or contracts 
very little. The magnification of positives is from 2.4 to 2.6, before taking optical 
distortion into account. According to occasional examinations made with an accele- 
ration sensor, the motion of the towing carriage is extremely smooth and is free from 
mechanical vibrations of any kind, owing to the use of lubricating films attached to 
the rails and to the employment, in addition, of backward tension wires. 
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FIGURE 1. Schematic illustration o f  the towing water tank. 1, Variable-speed motor; 2 ,  pulley; 3. 
steel wire; 4, water tank;  5 ,  rails; 6, time-count equipment; 7 ,  towing carriage; 8, test cylinder; 
9, slit; 10, illuminator. (Unit o f  length: mm.) 
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FIGURE 2 .  Photography of particle paths 

2.2.  Measurement of particle velocity 

Particle velocity is computed from the length of every clearly drawn particle path 
on the photograph and from the exposure time of the camera, so that an instantaneous 
velocity distribution of the flow may be obtained. The measurement of particle paths 
is done by the manual operatJion of a digitizing tablet, one of the simplest 
image-processing devices, which analyses x- and y-coordinates of any marked points 
on a photograph attached to  the tablet. The two end-points of each particle path, 
when distinguishable, are established visually by the operator, bearing in mind the 
direction of flow. At the same time, output signals for the corresponding coordinates 
are put into the personal computer for analysis. Then the mean location of the particle 
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0 components: 

[At: exposure time] 

FIGURE 3. Definition of the two components of the velocity vector and 
of the coordinates of the mean displacement. 

paths and the two components of the corresponding velocity vectors are determined 
by means of the computation shown in figure 3, and put into the external memory 
of the computer. The number of particle paths is between 2000 and 4000 per 
photograph, about 20 yo of which are not put into the measurement because it is clear 
from the characteristics of their trajectories that  the orientation of some of the 
lamellar particles has changed during the exposure time, with respect to the direction 
of the illumination. The time required to locate the remainder is between 2 and 4 h 
per photograph. The exposure time of the camera is measured electrically from the 
time during which the circuit between its synchronized external terminals is closed. 
This time measurement turns out to be accurate enough to compare with that of 
particle paths. As for the optical distortion introduced on the photographic images, 
the following corrective calibration is made with each experiment : an experimental 
functional formula is provided for the relationship botween apparent and real 
distances from the centre of the photographic field, and each pair ofx- and y-coordinates 
located on the photograph is converted into one on the real scale, thus removing all 
possible distortion. Figure 4 shows an example of velocity distribution as observed 
on the original photograph (a ) ,  and as image-processed and reproduced on the CRT 
display of the computer ( b ) .  

2.3. Mesh-point velocity 

A square grid pattern is imagined a8 covering the entire photographic field with a 
view to numerical calculations, and the velocity at each of the mesh points is 
interpolated from among a number of neighbouring velocity vectors. Supposing two 
linear equations between the unknown mesh-point velocity (u, v) a t  (0,O) and the 
measured velocity ( u k ,  v k )  a t  (tk, q k ) ,  as follows, 

the unknown variables (u, du/dx, du/ay,  v, av/dx and av/ay) a t  each ofthe mesh points 
are determined from 4-30 sets of the measurements ( u k ,  vk, t k  and qk) by means of 
the least-squares method; that is, they are so evaluated that the squares of the 
difference between both sides of ( 1 )  and ( 2 )  take their smallest values; thus producing 
the two components of the mesh-point velocity. 
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FIGURE 4. An example of measured velocity distribut,ion : (a )  photographed; ( 6 )  reproduced on t,he 
CRT divplay of the computer; (c) interpolated mesh-point distribution. 
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The mesh interval is fixed at about i-k of the cylinder diameter as a result of trial 
calculations of various kinds. First, it  was confirmed that, in order to  derrease 
mathematical errors (see 5 4) introduced by this linear interpolation, the interpolating 
area should be extended so far that  every one of the four quadrants centred on the 
mesh point concerned covers a t  least one measurement of a velocity vector. Secondly, 
while preserving this condition, and assuming that the area should be circular, an 
examination was made to establish the minimal radius requred a t  each mesh point. 
The results of using various mcsh intervals showed that at about 80 %, of the mesh 
points this radius remained within a certain length, and that the scatter was quite 
normal within these mesh points. This length corresponded to&-& cyclinder diameter, 
and we regarded the doubled radius as an appropriate mesh interval. 

Figurc 4(c) shows an example of mesh-point distribution of velocity derived from 
( b )  in the same figure. 

2.4. Stream function, vorticity, premure 

The stream function at the mesh point P in figure 5 is 
f P  

Y p  = YO+ ( u d y - w d x ) ,  (3) 
J O  

were Y o  is that for the origin 0. Then the mesh-point distribution of the stream 
function can be calculated by means of itcrative integrations of (3) ,  if the initial value 
YO and the location of the origin are provided. I n  our case, the integration of the 
equation is itcratcd by means of a trapezoid approximation, and is initiated from a 
mesh point located in the centre of the computing area in order to minimize the 
accumulation of integral errors. The initial value is usually supposed to be zero. As 
regards the integral route, we adopted the method illustrated in figure 6, namcly, for 
thc mcsh points along the two axes crossing a t  the origin, we integrated in either the 
x- or y-direction only, and for all the others the two values integrated in the x- and 
y-direction are arithmeticdly averaged. 

The vortivity distribution is cdculated from that of the mesh-point velocity, with 
thc aid of finitc-difference approximation of the definitive formula expressed in 
two-dimensional form. At a mesh point ( i ,  j) the vorticity wii is 

where Sx and Sy are the mesh intervals in the x- and y-directions respectively; and 
in our calculations i t  is always the case that Sx = 8y. The velocity components suffixed 
with 4 correspond to those equidistant from the relevant two mesh points, and they 
are evaluated by arithmetically averaged values. It should be remarked in passing 
that neither vorticity nor pressure are calculated along the four edgelines of the grid 
area because of the restriction of the finite-difference approximation. 

The distribution of pressure is obtained from a series of numerical integrations of 
the steady Navier-Stokes equation in two-dimensional form ; that  is 

In these equations the pressure gradients ap/ax and ap/i?y are computed first from 
the measured values of other terms, among which all the derivatives of u and v are 
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FIGURE 5 .  FIGURE 6. 

FIGIJRE 5 .  Definition of stream function. 

FIGURE 6. Portion of mesh points showing integral routes of stream function and pressure. ., 
Starting point (Yo = 0); 0 ,  integration in x- or y-direction; 0, integration in 2- and y-direction 
(averaged). 

evaluated through finite-difference approximation. Then the integration of these 
pressure gradients are iterated from thc starting point situated in the centre of the 
computing area. The initial value of the pressure is supposed to be pUZ,, where p is 
the density of the fluid and U ,  the moving speed of the towing carriage (i.e. that  
of the test cylinder). The integral route is subject to the method illustrated in figure 
6 except inside the cylinder. 

All the calculations of stream function, vorticity and pressure are normalized 
according to the following formulae : 

where d is the diameter of the cylinder. These normalized paramet,ers are linearly 
interpolated between every two adjacent mesh points, and thereby a number of 
contour lines are drawn for each of the parameters. The contour lines as well as the 
relevant velocity profiles are usually presented on the CRT display of the computcr, 
which has 512 x 256 image dots. 

3. Results of calculations 
The first example is a series of flow-visualization pictures showing the development 

of a twin vortex, formed behind a circular cylinder that has been impulsively 
accelerated to constant speed. They are shown in figurc 7 together with the passage 
of time after the start of motion of the cylinder. The respective distributions of stream 
function, vorticity and pressure in this unsteady twin-vortex flow are shown in figures 
8 , 9  and 10. Table 1 is a summary of the parameters employed in the flow-visualization 
experiment and numerical calculations. 
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The second example refers to the process of vortex shedding with respect to a 
Karman vortex street, generated behind a &cular cylinder moving at constant speed. 
The photographic images are given in figure 1 1  Figures 12, 13 and 14 show the 
respective distributions of stream function, vorticity and pressure in this steady-state 
Karman vortex flow. The time interval between every two photographs is 3.30s 
which is equivalent to about t of the period of vortex shedding. Table 2 is a summary 
of the parameters. 

The following is an examination of our experimental results, through which some 
aspects related to the behaviour and the nature of these two types of flow will be 
clarified with quantitative support. 

3.1.  Stream function 

The two sets of streamline configurations (figures 8 arid 12) show a reasonable 
agreement with their respective originals (figurcs 7 and l l ) ,  even in a cross-flow 
regime, which is proof of satisfying accuracy with respect to the vectorial aspect of 
a stream line. As regards the results of the unsteady twin-vortex experiment, i t  is 
recognized that asymmetry of the flow came about a t  a rather early stage of the 
development as well as that  the amount of fluid circulating inside the vortices has 
hardly changed in the course of this run. 

3.2. Vorticity 

Throughout the vorticity distributions of figures 9 and 13, one understands clearly 
on numerical grounds the concentration of vorticity in the neighbourhood of the 
cylinder, as well as its diffusion and decrement downstream. I n  the results of the 
Karman-vortex experiment (figure 13) one can follow the shedding process of 
vorticity: one of the standing vortex pair concentrated on either side of the cylinder, 
restraining alternately the spread of the other, starts to divide itself into two, which 
leads to  the vortex shedding. In the results of the unsteady twin-vortex experiment 
(figure 9 )  i t  is found that stage (d )  presents nerks in contour lines of large vorticity, 
so that it is apparent that  the vortex shedding is about to begin. 

3.3. Pressure 

The equipressure-line configurations of the unsteady twin vortex (figure 10) show how 
the low-pressure part spreads out in the rear of the cylinder and the pressure gradient 
around it becomes gentle as the twin vortex grows. The results of the Karman-vortex 
flow (figure 14) do not show this correspondence betmeen vortex-forming regions and 
those of low pressure, bevause these distributions are cal(w1ated from the mesh-point 
velocity compounded with the moving speed c', of the cylinder. n7e tried therefore 
to recalculate the distributions of stream function from this cornpounded mesh-point 
velocity. The calculation results arc illustrated in figure 15, and these demonstrate 
the well-known phenomenon of prcssurc dropping toward thc centre of curvature of 
the streamlines. 

3.4. Comparison with results of previously puhlished experimental 
investigations and theoretical calculations 

The closed wake length of the unsteady twin vortex at Ru = 100 is measured from 
the streamline Y* = 0 presented in figures 8(b-d) ,  and is compared with the results 
of theoretical cdculations by Son & Hanratty (1969) and Collins & Oennis (1973),  
as well as experimental data by Honji & Tancda (1969) and Bouartl & Coutanceau 
(1980). All of these results are illustrated in figure 16. Both the experimental values, 
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Diameter of cylinder 30.5 mm 
Moving speed of cylinder 

Position of camera 

7.25 mm/s 

fixed in relation 
Reynolds number 200 

Exposure time 0.90 s 
to cylinder 

Mesh interval 
Number of mesh points 

Sx = Sy = 392 mm 
19 x 25 (u, v, Y) 
17 x 23 (0, p )  

TABLE 1. Summary of the parameters of the unsteady twin-vortex experiment (figures 7 and 10) 

because of the asymmetry of flow, and the theoretical ones, because of the large size 
of the meshes away from the cylinder, are inaccurate to some extent, though the 
former are about 10% larger than the latter in the last stage of comparison. We 
consider that this is because the unsteady twin vortex produced in the experiments 
loses its symmetry from early in the run and has a growing tendency toward shedding. 

Figure 17 shows streamline configurations a t  t* ( =  tU,/d) = 2.65 presented in the 
theoretical calculation by Son & Hanratty (1969) and a t  t *  = 2.02 by Pate1 (1976). 
These coineide satisfactorily with our experimental result for about the same time 
duration (t* = 3.66, figure 8 b )  as concerns the location of vortex centres and the 
geometrical configuration of the streamlines, as well as the numerical values of Y*.  
This is because the comparison is made rather soon after the start of motion of the 
cylinder. 

4. Estimation of errors 

and calculations : 
There are some potential problems regarding the accuracy of our measurements 

(i) traceability of aluminium particles ; 
(ii) errors in measuring particle pathlines on the photograph ; 
(iii) errors in measuring exposure time of the camera; 
(iv) velocity evolution during the exposure time ; 
(v) errors in numerical calculations. 

From among these, the termination error of the computer included within (v) is not 
discussed here because i t  is too small to take into account. 

4.1. Traceability of particles 

I n  spite of a specific gravity of 2,7, the aluminium particles used in the present 
experiment descend in water a t  a very small sedimentation rate because they are as 
small as 2-7 pm in length. According to Stokes' resistance law, this rate is approxi- 
mately 20 pm/s provided that the particle is a sphere of 5 pm in diameter and the 
water temperature is 15 O C .  In  our experiments the acceleration rate of fluid in a 
horizontal direction is lop3 m/s2 a t  most, which is much smaller than that of 
gravity. The particles are consequently considered to trace the motion of the fluid 
closely. 
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Diameter of cylinder 
Moving speed of cylinder 
Reynolds number 
Position of camera 

Exposure time 
Photographing interval 
Mesh interval 
Number of mesh points 

195  mm 
559 mm/s 
100 
fixed in relation 

090 s 
3.30 s ( x 4T) 
Sx=Sy = 3.97mm 
19 x 26 (u, v, Y) 
1 7 x 2 4 ( w , p )  

to fluid 

(T = period of vortex shedding) 

TABLE 2. Summary of the parameters of the Karmhn-vortex experiment (figures 11 and 15) 

4.2. Errors in measuring particle pathlines on the photograph 

These can be subdivided into four categories : 

photographic apparatus as well as to the refractive effect of water; 
(i) distortion of photographic images owing to the optical effect of lenses of the 

(ii) effect of the thickness of the lighting plane; 
(iii) expansion or contraction of photographic paper owing to a change in room 

temperature or humidity ; 
(iv) measurement errors in operating the digitizing tablet caused by perceptual 

errors on the part of the operator or instrumental inaccuracy. 
From among these (i), the distortion of photographic images, is not discussed here 
because, as is mentioned in 5 2, calibration is made for every pair ofx- and y-coordinates 
noted on the photograph. As for (iii), the expansion or contraction of photographic 
paper, i t  has been confirmed in the process of the calibration that the plastic-coated 
paper employed here causes hardly any problems for the measurement. It is therefore 
the effects of (ii) and (iv) that  will be discussed here. 

4.2.1. Effect of the thickness of the lighting plane. It is at two points in the 
photographic field of the camera that the thickness of the lighting plane affects 
measurement results most seriously, that is, a t  the bottom of the right and left edges 
of the field, because both the thickness itself and the angle of vision of the camera 
take their largest values there. Supposing the camera is fixed at the lowest position 
in common use, where the vertical cross-section a t  these two points is illustrated in 
figure 18, the computed value of the displacement S noted in this figure is about 
1.0 mm. On the other hand, when evaluating the velocity gradients (au/ax, &lay, 
avldx, dvldy) at each of the mesh points by means of a linear approximation, the 
maximal gradient turns out to be less than 0.2 s-l. The maximal error of velocity 
vectors caused by this displacement is therefore 0.2 mm/s. 

4.2.2. Measurement errors in operating the digitizing tablet caused by perceptual errors 
on the part of the operator or instrumental inaccuracy. For the purpose of estimating 
the liability to errors of this kind occurring with our experimental technique, the 
towing water tank of figure 1 is re-employed without setting the cylinder on the 
carriage. The aluminium particles, suspended in water and kept carefully in a 
stationary state, are photographed with the same camera as is used in the experiments, 
fixed to the towing carriage moving a t  constant speed. Then the length of every 
particle path on the resulting photographs is measured by the use of the digitizing 
tablet. The results are a t  most 0.4 mm longer or shorter than those established by 
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FIGURE 17. Streamline configurations at Re = 200 derived from theoretical calculations : 
( a )  Son & Hanratty (1969) (t* = 265); (b) Patel (1976), (t* = 2.02). 

a more objective estimation based on the measured moving speed of the towing 
carriage, the exposure time of the camera, the degree of magnification of the 
photographic image, and the optical distortion introduced into it. This difference in 
length corresponds to  0.17 mm on the real scale. Since the exposure time of the camera 
is always 0-90 s in the course of this examination, the maximal measurement error 
of velocity vectors discussed here is within 0.2 mm/s. 

4.2.3. Efect of measurement error on  calculated results. From the above, we come 
to the conclusion that the maximal measurement error of velocity vectors amounts 
t,o 0.4 mm/s. It is probable therefore that the measurement of short particle paths 
of 2-3 mm or less might be considerably affected by this degree of error. I n  order 
to examine the effect, artifical error values within k0.4 mm/s are added in random 
order to every measurement of velocity vectors, and each of the parameters 
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FIGURE 18. Vertical cross-section of the water tank where the 
thickness of the lighting plane is greatest. (Unit of length: rnni.) 

calculated from this ‘renewed ’ velocity distribution is compared with the original, 
which contains no artificial errors. The error values are supposed to be subject to 
a Gaussian distribution. I n  consequence of this comparison, some of the components 
of the interpolated mesh-point velocity have changed by about 10 yo, though the 
change in calculations of stream function, vorticity and pressure has remained less 
than 5 yo. 

4.3. Errors in measuring exposure time of the camera 

The motion of the focal-plane shutter of the camera is recorded by VTR equipment, 
together with the superimposed visual display of the passage of time. After measuring 
the exposure time based on this visual display of time, the result is compared with 
that by means of the electrical measurement explained in Q 2. The difference between 
these two is of the order of lOP3s in the case of our usual exposure time of 
approximately 0.90 s. Therefore the error rate of the exposure-time measurement is 
within 1 yo, whereas that of the velocity-vector measurement is 5 yo a t  least. This 
means that the time-measurement error has hardly any effects on the determination 
of velocity fields. 

4.4. Velocity evolution during the exposurp time 

The exposure time of the camera should be short enough to diminish the effect of 
nonlinear velocity evolution for its duration, and, a t  the same time, long enough to 
avoid the measurement error of particle paths. In  our experiment, as a result of some 
trial calculations, it is fixed at 0-90 s, which corresponds to the minimal required 
exposure time with which the measurement error of velocity vectors remains within 
0.4 mm/s, and (this is very important) the direction of the vectors can be barely 
determined even in the most-stagnant regions. One of the criteria of the former 
requirement is the ratio of exposure timc to the fluctuation period of the flow. In  our 
experiment on the Karman vortex at  Re = 100, the vortcx-shedding period is about 
25 s, so that the ratio is approximatcly 28. Considering here the slower velocity 
evolution in the unsteady twin-vortex flow a t  H e  = 200, the velocity fluctuation 
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during the exposure time does not seem to produce a serious effect on our 
measurements. 

4.5. Errors in numerical calculations 

The estimation of the errors in this category is carried out in a way similar t,o that 
described by Apelt (1958) and Hamielec & Raal (1969) in their numerical calculations 
of the theoretical analysis. 

4.5.1. Residual of the results calculated by means of the beast-squares method. When 
interpolating the mesh-point velocity by means of the linear approximation explained 
in $ 2, calculation is also made as to residuals of the results calculated by means of 
the least-squares method, and the accuracy of the interpolation is estimated from 
their maximal and root-mean-square values a t  each of the mesh points. As regards 
the maximal values of residuals, the effect of the measurement error has exceeded that 
of the calculation error in many of the small-velocity regions, which results in 
residuals being more than twice as large as measurcrnents. However, in large-velocity 
regions in which thc interpolated velocity is 3 mm/s or more, the effect of the 
measurement crror decreases and the maximal value of residuals always remains 
within 40 yo of the measurements. This large percentage of around 40 yo is generally 
found at  some of the mesh points located near the cylinder. Since the same tendency 
is found with the root-mean-square values of residuals, the interpolation of mesh-point 
velocity is considered to be relatively inaccurate in the neighbourhood of the cylinder. 

4.5.2. Variation of integrated parameters according to integral route. The evaluation 
of stream function and pressure a t  most of the mesh point's is carried out by averaging 
two values integrated in the x- and y-directions, as is explained in conncction with 
figure 6. We tried therefore to estimate the integral error from the difference between 
these two values of integration. 

( a )  Integral error in calculating distributions of stream function. Table 3 shows the 
results of integration concerning the stream function. Obviously the integral error 
of the Karman-vortex experiment is, on the whole, larger than that of the unsteady 
twin-vortex experiment. Within the results of the latter, the degree of error decreases 
with the passage of time. As a result of examining the distribution of errors, one finds 
that i t  is with one or two examples of the eight that  large values of integral error 
stand out in the neighbourhood of the cylinder. With all the others, however, large 
errors are introduced only a t  random in small-velocity regions. It is thought from 
the above that the integral error of the stream function originates mainly from the 
measurement error of velocity vectors in these regions. I t  can be said as well that  
the calculation of the stream function is so accurate that we can take this as 
adequately established. 

( b )  Integral error in calculating distributions of pressure. Table 4 shows the results 
of integration related to the pressure. The error values are evidently larger here, 
except that  those in the last two stages of the unsteady twin-vortex experiment are 
comparatively small. Examining the distribution of errors, one sees several regions 
with large error values spread out in the rear of the cylinder and near the roll-up of 
vortices. In consideration of the two facts that  the time development of flow becomes 
very slow in the last two stages of our experiment of the unsteady twin vortex and 
that the flow immediately behind the cylinder is subject to a very rapid change of 
the velocity field, it is thought that the integral error of the pressure is, for the greater 
part, due to the neglect of the unsteady terms in the original equations. 

4.5.3. Error estimation by means of the equation of continuity. The error due to 
calculation is estimated also by examining the sufficiency of the equation of 
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Difference SY * 

Unsteady (a)  
twin vortex (b )  

(c) 
(4 

in steady (b )  
state (c) 

(4 

Karmin vortex ( a )  

Maximal 
values 

0053 
0060 
0.044 
0035 

009 1 
0069 
0075 
0036 

Mean 
values 

0007 
0014 
0.008 
0007 

0.016 
0013 
0.013 
0010 

(a)-(d) correspond to figures 7 and 11 

TABLE 3. Difference SY* between two integrated values of stream function 

Difference Sp* 

Unsteady (a) 
twin vortex (b)  

(4 
(4 

Karman vortex (a)  
in steady (b )  
state (4 

(4 

Maximal 
values 

0.352 
0.204 
0166 
0114 

0388 
0.386 
034 1 
0.286 

Mean 
values 

0033 
0050 
0029 
002 1 

0092 
0078 
0.070 
0088 

(a)-(d) correspond to figures 7 and 11 

TABLE 4. Difference Sp* between two integrated values of pressure 

continuity for each of the mesh sections. This sufficiency is judged from the value 
E ,  which is defined as follows: for a mesh point ( i , j ) ,  

f3x f3y + (av/a?& f3y 6x 1. & . .  = 
23 I urn f3Y 

where the velocity gradients &/ax and av/ay are evaluated from the distributions 
of mesh-point velocity with the aid of finite-difference approximation, as is the case 
in calculating the vorticity. Table 5 shows the distribution of E together with the mean 
values thereof. Considering here that the maximal error rate of the velocity-vector 
measurement is more than 3 yo, one comes to the conclusion that the equation of 
continuity is well satisfied with respect to the greater part of the mesh sections within 
the extent of measurement errors. Mesh sections provided with large values of E are 
found generally in the neighbourhood of the cylinder and the vortex-forming regions. 
The reason for this is thought to be that the nature of the velocity field around these 
mesh sections is not susceptible to the linear approximation. 

4.5.4. Calculations with varied mesh intervals. The mesh interval was reset twice 
in calculating the parameters in the two examples of the experiments whose original 
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Distribution o f t  
(number of mesh points) 

(h.5 "zo 

338 
306 
340 
367 

322 
362 
389 
359 

.5 l0O0 l(t15"" ItF2O". 

43 9 1 
70 12 3 
46 4 1 
24 0 0 

73 9 4 
36 7 3 
18 1 0 
39 8 2 

(a)-(d)  correspond to  figures 7 and 11 

TABLE 5. Dist,rihution and mean values of e 

Mean 
values 
of F; 0" 

2.5 
3.1 
2.5 
1 9 
3.1 
2.5 
1 
2.3 

Difference 8Y * 

Mesh Maximal 
interval values 

Twin vortex ( d )  x 2  0.053 
x l  0.035 
x 0.5 0.028 

Karman X2 0.092 

~ 0 . 5  0022 
vortex ( d )  x l  0.036 

Mean 
values 

0.01 2 
0.007 
0.004 

0.020 
0.0 10 
0.006 

Mean values 
normalized 
by SX = Sy 

0.006 
0007 
0.008 

0.010 
0.0 10 
0.01 1 

(d )  corresponds to figures 7 and 1 1  

TABLE 6. Variation of difference SY* according to  mesh interval 

images appear in figures 7 ( d )  and 11 ( d )  ; the first time a t  twice as long and the second 
time a t  half as long. Calculated results derived from the same original are compared 
with one another and the calculation error is estimated according to the procedure 
described in the preceding sections. 

( a )  Btream function. The variation of distributions of stream funct>ion according 
to mesh interval is illustrated in figure 19. Finer meshos produce a more-detailed 
description of streamlines, especially when they havc largo curvatures. Pievertheless, 
taken as a whole, one might say that the three kinds of results differ only slightly 
from one other. 

Table 6 shows the difference between two integral values of strcam fiinction 
integrated along different routes. From this table, i t  can be seen that, though the 
difference 6Y* decreases with finer meshes, the normalized difference is much the 
same regardless of mesh intervals. It is concluded also from this that  the integral error 
of the stream function originates mainly from the measurement error. 

(6) Vorticity. The vorticity distributions derived from the calculations of varicd 
mesh intervals are given in figure 20. In the case of the finest mesh, every equivor- 
ticity line is drawn minutely, and the peaks of vorticity located on both sides of the 
cylinder, which are otherwise smoothed out and obscured, come to appear clearly. 
Except in these regions, however, one finds some unna.turally curved contour lines 
or unexplained peaks of vorticity. Table 7 shows some of the calculations of F defined 
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FIGURE 19. Distributions of stream function with varied mesh intervals: 
(a)-(c) unsteady twin vortex ; (d)-(f) Karman vortex. 

by (8). This value of e is thought to reflect the accuracy of vorticity, because both 
E and the vorticity are calculated here from the velocity gradients computed by means 
of the same finite-difference approximation. It is obvious from this table that the 
mean value of E is smallest in the case of the original mesh interval. The reason for this 
is considered to be as follows: some of the computed velocity gradients are greatly 
affected, in the case of larger meshes, by calculational errors originating from the 
linear approximation of the velocity field, or, in the opposite case, by the measurement 
error of velocity vectors. As a result, it  might be said that the mesh interval in the 
present experiment has been properly determined with respect to the calculation of 
vorticity, though finer meshes are required in some parts. 

( c )  Pressure. The variation of pressure distributions according to mesh interval is 
shown in figure 21. It is clear that the results of the Karman-vortex experiment 
present an outstanding change, especially a change in pressure gradients, according 
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FIGIJRE 20. Vorticity distributions with varied mesh intervals : 
(a)-(c) unsteady twin vortex ; ( d ) - ( f )  K i r m i n  vortex. 

Error rate E (yo) 
Mesh Maximal 

interval values 

Twin vortex (d) x 2  8.66 
x l  7.92 
xo.5 16.1 

KBrman x 2  11.1 
vortex ( d )  x l  10.4 

x 0.5 11.9 

Mean 
values 

2.67 
1.88 
1.75 

2.49 
1+36 
1.79 

(d )  corresponds to figures 7 and 11 

TABLE 7. Variation of calculations of B according to  mesh interval 
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FIGURE 21. Pressure distributions with varied mesh intervals : 
(a)-(c) unsteady twin vortex ; (d)-(f) Karman vortex. 

o that  in the mesh interval. Since this is not clearly recognized in the results of the 
nsteady twin-vortex experiment, in which the flow is subject to a very slow change 
f velocity fields, i t  is supposed that the calculation of the pressure is strongly affected 
y the neglect of the unsteady terms in the original equations. 
Table 8 shows the difference between two integral values of pressure integrated 

long different routes. It can be seen from this table that the integral error grows 
trger as the mesh grows finer. The reason for this is probably that the calculations 
f mesh-point velocity incorporate a certain degree of approximation error indepen- 
3ntly of mesh intervals, because of the fixed density of velocity vectors distributed 
i the photographic image. Consequently the derivatives of velocity components in 
ie equations concerned ought to be less accurate with finer meshes, as long as they 
.e computed by means of finite-difference approximation. 
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Mesh 
interval 

Twin vortex (d )  x 2  
x l  
x 0 5  

Karman x 2  
vortex ( d )  x l  

x 05 

Maximal 
values 

0111 
0114 
0.147 

0387 
0286 
0.191 

Difference Sp* 

Mean 
values 

0026 
0.02 1 
0017 

0121 
0088 
0055 

Mean values 
normalized 
by Sx = Sy 

0.013 
0021 
0034 
006 1 
0088 
0.111 

(d) corresponds to figures 7 and 11 

TABLE 8. Variation of difference Sp* according to mesh interval 

5.  Conclusions 
(i) A new system has been developed for evaluating the principal physical 

parameters of various types of two-dimensional flow, steady or unsteady, with the 
aid of flow-visualization and image-processing techniques. 

(ii) Through the application of this system, instantaneous distributions of velocity, 
stream function, vorticity and pressure were calculated with reasonable accuracy for 
two examples of flow past a circular cylinder ; one is characterized by an unsteady 
twin vortex at Re = 200 and the other by a Karmkn vortex in a steady state at 
Re = 100. 

(iii) The results of the unsteady twin-vortex experiment corresponded well with 
those of previously published experimental investigations and theoretical calculations 
in the early stages after bhe start of motion of the cylinder. 

(iv) The results of the KBrmGn-vortex experiment clearly showed the shedding 
process of vorticity from the neighbourhood of the cylinder and provided numerical 
support. 

(v) The measurement error of velocity vectors evaluated from the flow-visualiza- 
tion pictures was within 0.4 mm/s, which affected the subsequent calculations only 
to a minor degree. 

(vi) As concerns calculation errors, the conclusions are as follows: 
(a )  too-fine meshes produced rather inaccurate calculations of the parameters ; 
( b )  the interpolation of mesh-point velocity was relatively inaccurate in the 

neighbourhood of the cylinder, which did affect the subsequent calculations ; 
( c )  as for the stream function, the accuracy was on the whole satisfactory, though 

as far as vorticity was concerned, finer meshes in some parts might have been more 
satisfactory ; 

( d )  the calculations of pressure distribution caused somewhat problematical results 
in certain cases. This is because of the neglect of the unsteady terms in the original 
Navier-Stokes equations. 

I n  connection with the computer system employed here, the authors are grateful 
to Assistant Professor T. Uemura of their laboratory for many instructive suggestions 
and discussions. 



Numerical processing of $ow-visualization pictures 311 

R E F E R E N C E S  

APELT, C. J. 1958 The steady flow of a viscous fluid past a circular cylinder at  Reynolds numbers 
40 and 44. Aero. Res. Counc. R. & M .  no. 3175. 

BOUARD, R. & COUTANCEAU, M. 1980 The early stage of development of the wake behind an 
impulsively started cylinder for 40 < Re < lo4. J .  Fluid Mech. 101, 583. 

COLLINS, W. M. & DENNIS, S. C. R. 1973 Flow past an impulsively started circular cylinder. J .  
Fluid Mech. 60, 105. 

COUTANCEAU, M. & BOUARD, R. 1977a Experimental determination of the main features of the 
viscous flow in the wake of a circular cylinder in uniform translations. Part 1. Steady flow. J .  
Fluid Mech. 79, 231. 

COUTANCEAU, M. & BOUARD, R. 19776 Experimental determination of the main features of the 
viscous flow in the wake of a circular cylinder in uniform translations. Part 2. Unsteady flow. J. 
Fluid Mech. 79, 256. 

HAMIELEC, A. E. & RAAL, J. D. 1969 Numerical studies of viscous flow around circular cylinders. 
Phys. Fluids 12, 11. 

HONJI, H. & TANEDA, S. 1969 Unsteady flow past a circular cylinder. J .  Phys. Soc. Japan 27, 
1668. 

PATEL, V. A. 1976 Time-dependent solutions of the viscous incompressible flow past a circular 
cylinder by the method of series truncation. Cornp. Fluids 4, 13. 

SCHWABE, M. 1935 Uber die Druckermittlung in der nichtstationkren ebenen Stromung. Ing. 
Arch. 6 ,  34. 

SON, J. S. & HANRATTY, T. J. 1969 Numerical solutions for the flow around a cylinder a t  Reynolds 
numbers of 40, 100 and 500. J .  Fluid Mech. 35 ,  369. 

TIMME, A. 1957 uber die Geschwindigkeitsverteilung in Wirbeln. Ig. Arch. 25, 205. 


